NanoFect™ Transfection Reagent Protocol

Catalogue number: NF100; Size: 1ml

Product Descriptions

NanoFect™ Transfection Reagent is a unique blend of polymers that delivers more DNA and siRNAs to cells than the leading lipid-based transfection kits. NanoFect™ is a powerful, broadly applicable transfection reagent for effective and reproducible transfections. The Nano-Fect reagent self-assembles nanoparticles in the presence of DNA and RNA. These complexes are readily taken up by target cells for efficient gene delivery. No media changes are required as NanoFect™ works in the presence of antibiotics and serum. The easy-to-use protocol with rapid, one-step incubation for 15 minutes before adding directly to target cells makes NanoFect™ well-suited for high-throughput transfection experiments.

Important Guidelines for Transfection

For high transfection efficiency and lower toxicity, transfect cells at high density. 70-80% confluence is highly recommended.

Protocol

Cells should be plated 18 to 24 hours prior to transfection so that the cell density reaches 70~80% confluence at the time of transfection. Complete culture medium with serum and antibiotics is freshly added to each well 2 hours before transfection.

The following protocol is given for transfection in a 24-well plate, refer to Table 1 for transfection in other culture formats.

- 1. For each well, add 0.5 ml of normal growth medium (antibiotic does not influence the result) freshly 2 hours before transfection.
- 2. For each well, dilute 0.5 μg of DNA in 50 μl of DMEM without serum, and mix gently.
- 3. Add 1.5 μl of NanoFect™ reagent (ALSTEM, Cat. # NF100) into another tube with 50 μl of DMEM without serum and mix gently.
- Add NanoFect™/DMEM into DNA/DMEM solution. Mix by vortexing for 5-10 seconds.
- 5. Incubate for ~15 minutes at room temperature to allow for NanoFect™/DNA complexes selfassembly.
- 6. Add the 100 μl NanoFect™/DNA mix drop-wise to the cells in each well and homogenize by gently swirling the plate.
- 7. Return the plates to the cell culture incubator.
- 8. Check transfection efficiency 24 to 48 hours post transfection.

Table 1. Recommended Amounts for Different Culture

Culture Dish Surface	Area (cm²)	Cell Number	Medium Volume (ml)	Plasmid(μg)	NanoFect (μΙ)	Diluent Volume (μl)
96-well	0.3	1-1.5x10 ⁴	0.1	0.1	0.3	10
48-well	1	2.5-5x10 ⁴	0.25	0.25	0.75	20
24-well	2	0.5-1x10 ⁵	0.5	0.5	1.5	50
12-well	4	1-2x10 ⁵	1	1	3	100
6-Well/35 mm	9.5	2-4x10 ⁵	2	2.5	7.5	200
60 mm/T25	28	5-10x10 ⁵	5	6-8	15-24	300
100 mm/T75	79	1.5-3x10 ⁶	10	15-20	40-60	500
150 mm/T150	153	5-9x10 ⁶	20	25-40	65-120	1000

Note:For different cell types, the optimal ratio of NanoFect (μ L): DNA (μ g) is around 3:1. We recommend the NanoFect (μ L):DNA (μ g) ratio of 2:1 as a starting point which usually gives satisfactory transfection efficiency with invisible cytotoxicity, however the amount of NanoFect may be adjusted from 2 to 4 μ l per μ g of DNA depending on the cell line to be transfected. To ensure the optimal size of NanoFect/DNA complex particles, we recommend using serum-free DMEM with High Glucose to dilute DNA and NanoFect Reagent.

Packaging Lentivirus

- 1. 18 to 24 hours prior to transfection, seed $6-8 \times 10_6$ HEK293FT cells per 150 mm₂ cell culture plate in 20 ml of culture medium containing 10% FBS (without antibiotics) so that the cell density reaches to $70^{\circ}90\%$ confluence at the time of transfection.
- 2. Add 1-1.6 ml of DMEM (serum free) to a 2 ml tube.
- 3. Add 45 μ l of lentiviral packaging mix and 4.5 μ g of your plasmid construct to the same tube of DMEM. Mix by pipetting.
- 4. Then add 55 μl of NanoFect™ into DMEM-Plasmid mixture. Mix well by vortex 10 seconds.
- 5. Incubate DMEM-Plasmid-NanoFect™ mixture at room temperature for 15 minutes.
- 6. Add DMEM-Plasmid-NanoFect™ mixture drop-wise into the dish, and swirl the dish to disperse evenly in the plate.
- 7. Return the dish to cell culture incubator at 37° C with 5% CO₂.
- 8. Change to fresh medium 12-24 hours after transfection.

- 9. Collect medium that contains lentiviruses at 48 hours and 72 hours after transfection into a 50-ml sterile, capped conical centrifuge tube. Centrifuge at 3000 rpm for 15 minutes at room temperature to pellet cell debris. Filter the viral supernatant through 0.45-µm filter.
- 10. For fresh filtered viral supernatant, aliquot the supernatant into sterile 1.5-ml tubes and store them at -80° C.
- 11. To concentrate virus, add a quarter volume of 5X Lentivirus Precipitation Solution (ALSTEM, Cat. # VC100) to the viral supernatant (volume of Lentivirus Precipitation Solution vs. volume of viral supernatant = 1:4) and mix thoroughly. Put the mixture in a 4° C refrigerator overnight and spin the virus pellet down the next day. Please refer to the user manual for details.

Note: If you use 100 mm plates, seed 4 x 10_6 cells/ dish in 10 ml culture medium without antibiotics. In step 2, add 0.8 ml of serum free medium per 100 mm plate.

In step 3, add 20 μ l of Lentiviral packaging mix and 2 μ g plasmid per 100 mm plate. In step 4, add 24 μ l of NanoFect[™] per 100 mm plate.

Packaging Retrovirus

- 18 to 24 hours prior to transfection, seed 8 X 10₆ 293FT cells per 150 mm₂ cell culture plate in 20 ml of normal culture medium (without antibiotics) so that the cell density reaches to 70~90% confluence at the time of transfection.
- 2. Add 1.2 ml of DMEM (serum free) to a 2 ml tube.
- 3. Add 20 μ l of retroviral packaging mix and 10 μ g of your plasmid construct to the same tube of DMEM. Mix by pipetting.
- 4. Then add 50 μl of NanoFect™ into DMEM-Plasmid mixture. Mix well by vortex 10 seconds.
- 5. Incubate DMEM-Plasmid-NanoFect™ mixture at room temperature for 15 minutes.
- 6. Add DMEM-Plasmid-NanoFect™ mixture drop-wise into the dish, and swirl the dish to disperse evenly in the plate.
- 7. Return the dish to cell culture incubator at 37° C with 5% CO₂.
- 8. Change to fresh medium 12-24 hours after transfection.
- 9. Collect medium that contains retroviruses at 48 hours and 72 hours after transfection into a 50-ml sterile, capped conical centrifuge tube. Centrifuge at 3000 rpm for 15 minutes at room temperature to pellet cell debris. Filter the viral supernatant through 0.45 µm filter.
- 10. Aliquot the filtered fresh viral supernatant into sterile 1.5-ml tubes and store them at -80° C.
- 11. To concentrate virus, add a quarter volume of 5X Retrovirus Concentration Solution (Cat. # VC200) to the viral supernatant (volume of Retrovirus Concentration Solution vs. volume of viral supernatant = 1:4) and mix thoroughly. Put the mixture in a 4° C refrigerator overnight and spin the virus pellet down next day. Please refer to the user manual for details.

Note: If you use 100 mm plates, seed 4 x 10_6 cells/ dish in 10 ml culture medium without antibiotics. In step 2, add 0.8 ml of serum free medium per 100 mm plate.

In step 3, add 20 μ l of Retroviral packaging mix and 5 μ g plasmid per 100 mm plate. In step 4, add 20 μ l of NanoFect[™] per 100 mm plate.

